Glow in the Dark

Purpose

Illustrate a chemical change involving chemiluminescence.

Materials

- Sodium carbonate 10-hydrate, Na₂CO₃ 10H₂O
- Sodium bicarbonate, NaHCO₃
- Luminol (3-aminophthalhydrazide)
- Ammonium carbonate monohydrate, (NH₄)₂CO₃ ◆ H₂O
- Copper(II) sulfate 5-hydrate, CuSO₄ 5H₂O
- (2) 1-L Erlenmeyer flasks
- (2) 400-mL glass beakers
- 100-mL graduated cylinder
- Electronic balance
- Deionized water

Safety

- Read the SDS sheets for all chemicals before using them.
- Wear safety glasses, gloves, and lab coat.
- Have an audience member remain by the light switch so no one has to move while the lights are dimmed.

Procedure

- 1. Add 500 mL of deionized water to a 1-L Erlenmeyer flask labeled "Solution A".
- 2. Add 10.7 g of sodium carbonate to Solution A. Stir.
- 3. Add 0.2 g of luminol to Solution A. Stir.
- 4. Add 24.0 g of sodium bicarbonate to Solution A. Stir.
- 5. Add 0.5 g of ammonium carbonate to Solution A. Stir.
- 6. Add 0.4 g of copper sulfate to Solution A. Stir.
- 7. Add deionized water to Solution a flask to a final volume of 1 L.
- 8. Add 950 mL of deionized water to a 1-L Erlenmeyer flask labeled "Solution B.
- 9. Add 50 mL of 3 % hydrogen peroxide to Solution B. Stir.
- 10. Pour equal volumes (~100 mL) of Solution A and B into separate beakers.
- 11. Dim the lights and then mix the solutions in the two beakers together.

Results

• Upon mixing, the resulting solution glows for several minutes.

Follow-up Teaching Notes

• The two solutions can be poured simultaneously down a clear spiral plastic tube for a more dramatic effect.

Concept

• Chemiluminescence.

Disposal/Clean-up

• The resulting solution can be placed in the science department's organic waste container for proper disposal by a licensed disposal company.

Ward's Science Tel: (866) 260-0501